Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The following repository contains the data used for the manuscript: "Searching for Low-Mass Exoplanets Amid Stellar Variability with a Fixed Effects Linear Model of Line-by-Line Shape Changes". Within line_property_files.zip there is file "line_property_files_README.md" that contains a description of each column of completeLines.csv. The important columns of this csv are date: time of observation line_order: unique identifier of a line, a combination of that line's central wavelength and order ID rv_template_0.5: the RV measure for a given line on a given day fit_gauss_a,fit_gauss_b,fit_gauss_depth,fit_gauss_sigmasq,proj_hg_coeff_0,proj_hg_coeff_2,proj_hg_coeff_3,proj_hg_coeff_4,proj_hg_coeff_5,proj_hg_coeff_6,proj_hg_coeff_7,proj_hg_coeff_8,proj_hg_coeff_9,proj_hg_coeff_10: the shape-change covariates that we use to control for stellar activity Below is a description of each of the data files completeLines.csv: this csv file contains the time series of every line's shape measurements and RVs, it is used throughout the analysis. line_property_files.zip: this directory contains .h5 files that contain all line-shape information and contaminated RVs for each line used in our analysis. The script clean_data.Rmd uses these as input and combines them all into a single csv file called completeLines.csv. project_template_deriv_onto_gh.h5: this contains the projection vector described in the paper to produce the orthogonal HG coefficients. The script clean_data.Rmd uses this as input and combines them all into a single csv file called completeLines.csv. models.zip: this directory contains the results from each model that was fit for our paper.more » « less
- 
            Exoplanets can be detected with various observational techniques. Among them, radial velocity (RV) has the key advantages of revealing the architecture of planetary systems and measuring planetary mass and orbital eccentricities. RV observations are poised to play a key role in the detection and characterization of Earth twins. However, the detection of such small planets is not yet possible due to very complex, temporally correlated instrumental and astrophysical stochastic signals. Furthermore, exploring the large parameter space of RV models exhaustively and efficiently presents difficulties. In this review, we frame RV data analysis as a problem of detection and parameter estimation in unevenly sampled, multivariate time series. The objective of this review is two-fold: to introduce the motivation, methodological challenges, and numerical challenges of RV data analysis to nonspecialists, and to unify the existing advanced approaches in order to identify areas for improvement.more » « less
- 
            Abstract Recent discoveries of transiting giant exoplanets around M-dwarf stars (GEMS), aided by the all-sky coverage of TESS, are starting to stretch theories of planet formation through the core-accretion scenario. Recent upper limits on their occurrence suggest that they decrease with lower stellar masses, with fewer GEMS around lower-mass stars compared to solar-type. In this paper, we discuss existing GEMS both through confirmed planets, as well as protoplanetary disk observations, and a combination of tests to reconcile these with theoretical predictions. We then introduce the Searching for GEMS survey, where we utilize multidimensional nonparameteric statistics to simulate hypothetical survey scenarios to predict the required sample size of transiting GEMS with mass measurements to robustly compare their bulk-density with canonical hot Jupiters orbiting FGK stars. Our Monte Carlo simulations predict that a robust comparison requires about 40 transiting GEMS (compared to the existing sample of ∼15) with 5σmass measurements. Furthermore, we discuss the limitations of existing occurrence estimates for GEMS and provide a brief description of our planned systematic search to improve the occurrence rate estimates for GEMS.more » « less
- 
            Abstract We revisit the long-studied radial velocity (RV) target HD 26965 using recent observations from the NASA-NSF “NEID” precision Doppler facility. Leveraging a suite of classical activity indicators, combined with line-by-line RV analyses, we demonstrate that the claimed 45-day signal previously identified as a planet candidate is most likely an activity-induced signal. Correlating the bulk (spectrally averaged) RV with canonical line activity indicators confirms a multiday “lag” between the observed activity indicator time series and the measured RV. When accounting for this lag, we show that much of the observed RV signal can be removed by a linear detrending of the data. Investigating activity at the line-by-line level, we find a depth-dependent correlation between individual line RVs and the bulk RVs, further indicative of periodic suppression of convective blueshift causing the observed RV variability, rather than an orbiting planet. We conclude that the combined evidence of the activity correlations and depth dependence is consistent with an RV signature dominated by a rotationally modulated activity signal at a period of ∼42 days. We hypothesize that this activity signature is due to a combination of spots and convective blueshift suppression. The tools applied in our analysis are broadly applicable to other stars and could help paint a more comprehensive picture of the manifestations of stellar activity in future Doppler RV surveys.more » « less
- 
            Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.more » « less
- 
            Abstract Barnard’s star is among the most studied stars given its proximity to the Sun. It is often considered the radial velocity (RV) standard for fully convective stars due to its RV stability and equatorial decl. Recently, an M sin i = 3.3 M ⊕ super-Earth planet candidate with a 233 day orbital period was announced by Ribas et al. New observations from the near-infrared Habitable-zone Planet Finder (HPF) Doppler spectrometer do not show this planetary signal. We ran a suite of experiments on both the original data and a combined original + HPF data set. These experiments include model comparisons, periodogram analyses, and sampling sensitivity, all of which show the signal at the proposed period of 233 days is transitory in nature. The power in the signal is largely contained within 211 RVs that were taken within a 1000 day span of observing. Our preferred model of the system is one that features stellar activity without a planet. We propose that the candidate planetary signal is an alias of the 145 day rotation period. This result highlights the challenge of analyzing long-term, quasi-periodic activity signals over multiyear and multi-instrument observing campaigns.more » « less
- 
            Abstract We validate the planetary nature of an ultra-short-period planet orbiting the M dwarf KOI-4777. We use a combination of space-based photometry from Kepler, high-precision, near-infrared Doppler spectroscopy from the Habitable-zone Planet Finder, and adaptive optics imaging to characterize this system. KOI-4777.01 is a Mars-sized exoplanet ( R p = 0.51 ± 0.03 R ⊕ ) orbiting the host star every 0.412 days (∼9.9 hr). This is the smallest validated ultra-short period planet known and we see no evidence for additional massive companions using our HPF RVs. We constrain the upper 3 σ mass to M p < 0.34 M ⊕ by assuming the planet is less dense than iron. Obtaining a mass measurement for KOI-4777.01 is beyond current instrumental capabilities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
